Loading...
机构名称:
¥ 5.0

背景。下一代望远镜的选址是在望远镜首次发射前的几十年选定的。选址通常基于近期的测量结果,但该测量结果太短,无法解释观测条件的长期变化,例如由人为气候变化引起的变化。因此,对于典型寿命为 30 年的天文设施,了解气候演变以优化观测时间至关重要。目标。在本研究中,我们分析了八个站点的天文观测条件趋势。大多数站点要么已经拥有提供现场天气参数测量的望远镜,要么是下一代望远镜的候选地。为了精细地表示地形,我们使用高分辨率模型比对项目提供的最高分辨率全球气候模型 (GCM) 集合,该集合是欧盟“地平线 2020 PRIMAVERA”项目的一部分。方法。我们评估了仅大气和耦合的 PRIMAVERA GCM 历史模拟,并与现场测量和欧洲中期天气预报中心 1979-2014 年期间的第五代大气再分析 (ERA5) 进行了比较。然后使用 PRIMAVERA 未来气候模拟分析 2015-2050 年期间当前场地条件变化的预测。结果。在大多数站点,我们发现 PRIMAVERA GCM 在温度、比湿和可降水蒸气方面与现场观测和 ERA5 相比具有良好的一致性。PRIMAVERA 模拟这些变量的能力提高了对其预测的信心。对于这些变量,模型集合预测所有站点都呈上升趋势,这将导致天文观测条件与当前条件相比逐渐变差。另一方面,预测相对湿度、云量或天文观测没有显著趋势,与观测和重新分析相比,PRIMAVERA 不能很好地模拟这些变量。因此,这些预测的信心不大。结论。我们的研究结果表明,气候变化将对天文观测的质量产生负面影响,并可能增加因场地条件恶劣而造成的时间损失。我们强调,天文学家在选址和监测过程中必须纳入长期气候预测。我们表明高分辨率 GCM 可用于分析气候变化对下一代望远镜场地特征的影响。

arXiv:2208.04918v1 [astro-ph.IM] 2022 年 8 月 9 日

arXiv:2208.04918v1 [astro-ph.IM] 2022 年 8 月 9 日PDF文件第1页

arXiv:2208.04918v1 [astro-ph.IM] 2022 年 8 月 9 日PDF文件第2页

arXiv:2208.04918v1 [astro-ph.IM] 2022 年 8 月 9 日PDF文件第3页

arXiv:2208.04918v1 [astro-ph.IM] 2022 年 8 月 9 日PDF文件第4页

arXiv:2208.04918v1 [astro-ph.IM] 2022 年 8 月 9 日PDF文件第5页

相关文件推荐